Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Extreme precision radial velocity (EPRV) measurements contend with internal noise (instrumental systematics) and external noise (intrinsic stellar variability) on the road to 10 cm s−1“exo-Earth” sensitivity. Both of these noise sources are well-probed using “Sun-as-a-star” RVs and cross-instrument comparisons. We built the Solar Calibrator (SoCal), an autonomous system that feeds stable, disk-integrated sunlight to the recently commissioned Keck Planet Finder (KPF) at the W. M. Keck Observatory. With SoCal, KPF acquires signal-to-noise ratio (S/N) ∼ 1200,R= 98,000 optical (445–870 nm) spectra of the Sun in 5 s exposures at unprecedented cadence for an EPRV facility using KPF’s fast readout mode (<16 s between exposures). Daily autonomous operation is achieved by defining an operations loop using state machine logic. Data affected by clouds are automatically flagged using a reliable quality control metric derived from simultaneous irradiance measurements. Comparing solar data across the growing global network of EPRV spectrographs with solar feeds will allow EPRV teams to disentangle internal and external noise sources and benchmark spectrograph performance. To facilitate this, all SoCal data products are immediately available to the public on the Keck Observatory Archive. We compared SoCal RVs to contemporaneous RVs from NEID, the only other immediately public EPRV solar data set. We find agreement at the 30–40 cm s−1level on timescales of several hours, which is comparable to the combined photon-limited precision. Data from SoCal were also used to assess a detector problem and wavelength calibration inaccuracies associated with KPF during early operations. Long-term SoCal operations will collect upwards of 1000 solar spectra per six-hour day using KPF’s fast readout mode, enabling stellar activity studies at high S/N on our nearest solar-type star.more » « less
- 
            Abstract We present optical spectroscopy of 710 solar neighborhood stars collected over 20 years to catalog chromospheric activity and search for stellar activity cycles. The California Legacy Survey stars are amenable to exoplanet detection using precise radial velocities, and we present their CaiiH and K time series as a proxy for stellar and chromospheric activity. Using the High Resolution Echelle Spectrometer at Keck Observatory, we measured stellar flux in the cores of the CaiiH and K lines to determineS-values on the Mount Wilson scale and the metric, which is comparable across a wide range of spectral types. From the 710 stars, with 52,372 observations, 285 stars were sufficiently sampled to search for stellar activity cycles with periods of 2–25 yr, and 138 stars showed stellar cycles of varying length and amplitude.S-values can be used to mitigate stellar activity in the detection and characterization of exoplanets. We used them to probe stellar dynamos and to place the Sun's magnetic activity into context among solar neighborhood stars. Using precise stellar parameters and time-averaged activity measurements, we found tightly constrained cycle periods as a function of stellar temperature between of −4.7 and −4.9, a range of activity in which nearly every star has a periodic cycle. These observations present the largest sample of spectroscopically determined stellar activity cycles to date.more » « less
- 
            Abstract The discovery and characterization of extrasolar planets using radial velocity (RV) measurements is limited by noise sources from the surfaces of host stars. Current techniques to suppress stellar magnetic activity rely on decorrelation using an activity indicator (e.g., strength of the Ca ii lines, width of the cross-correlation function, broadband photometry) or measurement of the RVs using only a subset of spectral lines that have been shown to be insensitive to activity. Here, we combine the above techniques by constructing a high-signal-to-noise activity indicator, the depth metric  ( t ) , from the most activity-sensitive spectral lines using the “line-by-line” method of Dumusque (2018). Analogous to photometric decorrelation of RVs or Gaussian progress regression modeling of activity indices, time series modeling of  ( t ) reduces the amplitude of magnetic activity in RV measurements; in an α CenB RV time series from HARPS, the RV rms was reduced from 2.67 to 1.02 m s −1 .  ( t ) modeling enabled us to characterize injected planetary signals as small as 1 m s −1 . In terms of noise reduction and injected signal recovery,  ( t ) modeling outperforms activity mitigation via the selection of activity-insensitive spectral lines. For Sun-like stars with activity signals on the m s −1 level, the depth metric independently tracks rotationally modulated and multiyear stellar activity with a level of quality similar to that of the FWHM of the CCF and log R HK ′ . The depth metric and its elaborations will be a powerful tool in the mitigation of stellar magnetic activity, particularly as a means of connecting stellar activity to physical processes within host stars.more » « less
- 
            Abstract Exoplanet discoveries have revealed a dramatic diversity of planet sizes across a vast array of orbital architectures. Sub-Neptunes are of particular interest; due to their absence in our own solar system, we rely on demographics of exoplanets to better understand their bulk composition and formation scenarios. Here, we present the discovery and characterization of TOI-1437 b, a sub-Neptune with a 18.84 day orbit around a near-solar analog (M⋆= 1.10 ± 0.10M☉,R⋆=1.17 ± 0.12R☉). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite (TESS) mission and radial velocity (RV) follow-up observations were carried out as a part of the TESS-Keck Survey using both the HIRES instrument at Keck Observatory and the Levy Spectrograph on the Automated Planet Finder telescope. A combined analysis of these data reveal a planet radius ofRp= 2.24 ± 0.23R⊕and a mass measurement ofMp= 9.6 ± 3.9M⊕). TOI-1437 b is one of few (∼50) known transiting sub-Neptunes orbiting a solar-mass star that has a RV mass measurement. As the formation pathway of these worlds remains an unanswered question, the precise mass characterization of TOI-1437 b may provide further insight into this class of planet.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, echelle spectrometer that specializes in the discovery and characterization of exoplanets using Doppler spectroscopy. In designing KPF, the guiding principles were high throughput to promote survey speed and access to faint targets, and high stability to keep uncalibrated systematic Doppler measurement errors below 30 cm s−1. KPF achieves optical illumination stability with a tip-tilt injection system, octagonal cross-section optical fibers, a double scrambler, and active fiber agitation. The optical bench and optics with integral mounts are made of Zerodur to provide thermo-mechanical stability. The spectrometer includes a slicer to reformat the optical input, green and red channels (445-600 nm and 600-870 nm), and achieves a resolving power of ∼97,000. Additional subsystems include a separate, medium-resolution UV spectrometer (383-402 nm) to record the Ca II H & K lines, an exposure meter for real-time flux monitoring, a solar feed for sunlight injection, and a calibration system with a laser frequency comb and etalon for wavelength calibration. KPF was installed and commissioned at the W. M. Keck Observatory in late 2022 and early 2023 and is now in regular use for scientific observations. This paper presents an overview of the as-built KPF instrument and its subsystems, design considerations, and initial on-sky performance.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
